Current File : /home/mmdealscpanel/yummmdeals.com/Time.zip
PKW�Z�ᦱ
Seconds.pmnu�[���package Time::Seconds;
use strict;

our $VERSION = '1.31';

use Exporter 5.57 'import';

our @EXPORT = qw(
    ONE_MINUTE
    ONE_HOUR
    ONE_DAY
    ONE_WEEK
    ONE_MONTH
    ONE_YEAR
    ONE_FINANCIAL_MONTH
    LEAP_YEAR
    NON_LEAP_YEAR
);

our @EXPORT_OK = qw(cs_sec cs_mon);

use constant {
    ONE_MINUTE => 60,
    ONE_HOUR => 3_600,
    ONE_DAY => 86_400,
    ONE_WEEK => 604_800,
    ONE_MONTH => 2_629_744, # ONE_YEAR / 12
    ONE_YEAR => 31_556_930, # 365.24225 days
    ONE_FINANCIAL_MONTH => 2_592_000, # 30 days
    LEAP_YEAR => 31_622_400, # 366 * ONE_DAY
    NON_LEAP_YEAR => 31_536_000, # 365 * ONE_DAY
    # hacks to make Time::Piece compile once again
    cs_sec => 0,
    cs_mon => 1,
};

use overload
    'fallback' => 'undef',
    '0+' => \&seconds,
    '""' => \&seconds,
    '<=>' => \&compare,
    '+' => \&add,
    '-' => \&subtract,
    '-=' => \&subtract_from,
    '+=' => \&add_to,
    '=' => \&copy;

sub new {
    my $class = shift;
    my ($val) = @_;
    $val = 0 unless defined $val;
    bless \$val, $class;
}

sub _get_ovlvals {
    my ($lhs, $rhs, $reverse) = @_;
    $lhs = $lhs->seconds;

    if (UNIVERSAL::isa($rhs, 'Time::Seconds')) {
        $rhs = $rhs->seconds;
    }
    elsif (ref($rhs)) {
        die "Can't use non Seconds object in operator overload";
    }

    if ($reverse) {
        return $rhs, $lhs;
    }

    return $lhs, $rhs;
}

sub compare {
    my ($lhs, $rhs) = _get_ovlvals(@_);
    return $lhs <=> $rhs;
}

sub add {
    my ($lhs, $rhs) = _get_ovlvals(@_);
    return Time::Seconds->new($lhs + $rhs);
}

sub add_to {
    my $lhs = shift;
    my $rhs = shift;
    $rhs = $rhs->seconds if UNIVERSAL::isa($rhs, 'Time::Seconds');
    $$lhs += $rhs;
    return $lhs;
}

sub subtract {
    my ($lhs, $rhs) = _get_ovlvals(@_);
    return Time::Seconds->new($lhs - $rhs);
}

sub subtract_from {
    my $lhs = shift;
    my $rhs = shift;
    $rhs = $rhs->seconds if UNIVERSAL::isa($rhs, 'Time::Seconds');
    $$lhs -= $rhs;
    return $lhs;
}

sub copy {
	Time::Seconds->new(${$_[0]});
}

sub seconds {
    my $s = shift;
    return $$s;
}

sub minutes {
    my $s = shift;
    return $$s / 60;
}

sub hours {
    my $s = shift;
    $s->minutes / 60;
}

sub days {
    my $s = shift;
    $s->hours / 24;
}

sub weeks {
    my $s = shift;
    $s->days / 7;
}

sub months {
    my $s = shift;
    $s->days / 30.4368541;
}

sub financial_months {
    my $s = shift;
    $s->days / 30;
}

sub years {
    my $s = shift;
    $s->days / 365.24225;
}

sub pretty {
    my $s = shift;
    my $str = "";
    if ($s < 0) {
        $s = -$s;
        $str = "minus ";
    }
    if ($s >= ONE_MINUTE) {
        if ($s >= ONE_HOUR) {
            if ($s >= ONE_DAY) {
                my $days = sprintf("%d", $s->days); # does a "floor"
                $str .= $days . " days, ";
                $s -= ($days * ONE_DAY);
            }
            my $hours = sprintf("%d", $s->hours);
            $str .= $hours . " hours, ";
            $s -= ($hours * ONE_HOUR);
        }
        my $mins = sprintf("%d", $s->minutes);
        $str .= $mins . " minutes, ";
        $s -= ($mins * ONE_MINUTE);
    }
    $str .= $s->seconds . " seconds";
    return $str;
}

1;
__END__

=encoding utf8

=head1 NAME

Time::Seconds - a simple API to convert seconds to other date values

=head1 SYNOPSIS

    use Time::Piece;
    use Time::Seconds;
    
    my $t = localtime;
    $t += ONE_DAY;
    
    my $t2 = localtime;
    my $s = $t - $t2;
    
    print "Difference is: ", $s->days, "\n";

=head1 DESCRIPTION

This module is part of the Time::Piece distribution. It allows the user
to find out the number of minutes, hours, days, weeks or years in a given
number of seconds. It is returned by Time::Piece when you delta two
Time::Piece objects.

Time::Seconds also exports the following constants:

    ONE_DAY
    ONE_WEEK
    ONE_HOUR
    ONE_MINUTE
    ONE_MONTH
    ONE_YEAR
    ONE_FINANCIAL_MONTH
    LEAP_YEAR
    NON_LEAP_YEAR

Since perl does not (yet?) support constant objects, these constants are in
seconds only, so you cannot, for example, do this: C<print ONE_WEEK-E<gt>minutes;>

=head1 METHODS

The following methods are available:

    my $val = Time::Seconds->new(SECONDS)
    $val->seconds;
    $val->minutes;
    $val->hours;
    $val->days;
    $val->weeks;
    $val->months;
    $val->financial_months; # 30 days
    $val->years;
    $val->pretty; # gives English representation of the delta

The usual arithmetic (+,-,+=,-=) is also available on the objects.

The methods make the assumption that there are 24 hours in a day, 7 days in
a week, 365.24225 days in a year and 12 months in a year.
(from The Calendar FAQ at http://www.tondering.dk/claus/calendar.html)

=head1 AUTHOR

Matt Sergeant, matt@sergeant.org

Tobias Brox, tobiasb@tobiasb.funcom.com

Balázs Szabó (dLux), dlux@kapu.hu

=head1 COPYRIGHT AND LICENSE

Copyright 2001, Larry Wall.

This module is free software, you may distribute it under the same terms
as Perl.

=head1 Bugs

Currently the methods aren't as efficient as they could be, for reasons of
clarity. This is probably a bad idea.

=cut
PKW�ZہhS]S]Piece.pmnu�[���package Time::Piece;

use strict;

require DynaLoader;
use Time::Seconds;
use Carp;
use Time::Local;

our @ISA = qw(DynaLoader);
 
use Exporter ();

our @EXPORT = qw(
    localtime
    gmtime
);

our %EXPORT_TAGS = (
    ':override' => 'internal',
    );

our $VERSION = '1.31';

bootstrap Time::Piece $VERSION;

my $DATE_SEP = '-';
my $TIME_SEP = ':';
my @MON_LIST = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
my @FULLMON_LIST = qw(January February March April May June July
                      August September October November December);
my @DAY_LIST = qw(Sun Mon Tue Wed Thu Fri Sat);
my @FULLDAY_LIST = qw(Sunday Monday Tuesday Wednesday Thursday Friday Saturday);

use constant {
    'c_sec' => 0,
    'c_min' => 1,
    'c_hour' => 2,
    'c_mday' => 3,
    'c_mon' => 4,
    'c_year' => 5,
    'c_wday' => 6,
    'c_yday' => 7,
    'c_isdst' => 8,
    'c_epoch' => 9,
    'c_islocal' => 10,
};

sub localtime {
    unshift @_, __PACKAGE__ unless eval { $_[0]->isa('Time::Piece') };
    my $class = shift;
    my $time  = shift;
    $time = time if (!defined $time);
    $class->_mktime($time, 1);
}

sub gmtime {
    unshift @_, __PACKAGE__ unless eval { $_[0]->isa('Time::Piece') };
    my $class = shift;
    my $time  = shift;
    $time = time if (!defined $time);
    $class->_mktime($time, 0);
}

sub new {
    my $class = shift;
    my ($time) = @_;

    my $self;

    if (defined($time)) {
        $self = $class->localtime($time);
    }
    elsif (ref($class) && $class->isa(__PACKAGE__)) {
        $self = $class->_mktime($class->epoch, $class->[c_islocal]);
    }
    else {
        $self = $class->localtime();
    }

    return bless $self, ref($class) || $class;
}

sub parse {
    my $proto = shift;
    my $class = ref($proto) || $proto;
    my @components;

    warnings::warnif("deprecated", 
        "parse() is deprecated, use strptime() instead.");

    if (@_ > 1) {
        @components = @_;
    }
    else {
        @components = shift =~ /(\d+)$DATE_SEP(\d+)$DATE_SEP(\d+)(?:(?:T|\s+)(\d+)$TIME_SEP(\d+)(?:$TIME_SEP(\d+)))/;
        @components = reverse(@components[0..5]);
    }
    return $class->new(_strftime("%s", timelocal(@components)));
}

sub _mktime {
    my ($class, $time, $islocal) = @_;
    $class = eval { (ref $class) && (ref $class)->isa('Time::Piece') }
           ? ref $class
           : $class;
    if (ref($time)) {
        my @tm_parts = (@{$time}[c_sec .. c_mon], $time->[c_year]+1900);
        $time->[c_epoch] = $islocal ? timelocal(@tm_parts) : timegm(@tm_parts);

        return wantarray ? @$time : bless [@$time[0..9], $islocal], $class;
    }
    _tzset();
    my @time = $islocal ?
            CORE::localtime($time)
                :
            CORE::gmtime($time);
    wantarray ? @time : bless [@time, $time, $islocal], $class;
}

my %_special_exports = (
  localtime => sub { my $c = $_[0]; sub { $c->localtime(@_) } },
  gmtime    => sub { my $c = $_[0]; sub { $c->gmtime(@_)    } },
);

sub export {
  my ($class, $to, @methods) = @_;
  for my $method (@methods) {
    if (exists $_special_exports{$method}) {
      no strict 'refs';
      no warnings 'redefine';
      *{$to . "::$method"} = $_special_exports{$method}->($class);
    } else {
      $class->Exporter::export($to, $method);
    }
  }
}

sub import {
    # replace CORE::GLOBAL localtime and gmtime if passed :override
    my $class = shift;
    my %params;
    map($params{$_}++,@_,@EXPORT);
    if (delete $params{':override'}) {
        $class->export('CORE::GLOBAL', keys %params);
    }
    else {
        $class->export(scalar caller, keys %params);
    }
}

## Methods ##

sub sec {
    my $time = shift;
    $time->[c_sec];
}

*second = \&sec;

sub min {
    my $time = shift;
    $time->[c_min];
}

*minute = \&min;

sub hour {
    my $time = shift;
    $time->[c_hour];
}

sub mday {
    my $time = shift;
    $time->[c_mday];
}

*day_of_month = \&mday;

sub mon {
    my $time = shift;
    $time->[c_mon] + 1;
}

sub _mon {
    my $time = shift;
    $time->[c_mon];
}

sub month {
    my $time = shift;
    if (@_) {
        return $_[$time->[c_mon]];
    }
    elsif (@MON_LIST) {
        return $MON_LIST[$time->[c_mon]];
    }
    else {
        return $time->strftime('%b');
    }
}

*monname = \&month;

sub fullmonth {
    my $time = shift;
    if (@_) {
        return $_[$time->[c_mon]];
    }
    elsif (@FULLMON_LIST) {
        return $FULLMON_LIST[$time->[c_mon]];
    }
    else {
        return $time->strftime('%B');
    }
}

sub year {
    my $time = shift;
    $time->[c_year] + 1900;
}

sub _year {
    my $time = shift;
    $time->[c_year];
}

sub yy {
    my $time = shift;
    my $res = $time->[c_year] % 100;
    return $res > 9 ? $res : "0$res";
}

sub wday {
    my $time = shift;
    $time->[c_wday] + 1;
}

sub _wday {
    my $time = shift;
    $time->[c_wday];
}

*day_of_week = \&_wday;

sub wdayname {
    my $time = shift;
    if (@_) {
        return $_[$time->[c_wday]];
    }
    elsif (@DAY_LIST) {
        return $DAY_LIST[$time->[c_wday]];
    }
    else {
        return $time->strftime('%a');
    }
}

*day = \&wdayname;

sub fullday {
    my $time = shift;
    if (@_) {
        return $_[$time->[c_wday]];
    }
    elsif (@FULLDAY_LIST) {
        return $FULLDAY_LIST[$time->[c_wday]];
    }
    else {
        return $time->strftime('%A');
    }
}

sub yday {
    my $time = shift;
    $time->[c_yday];
}

*day_of_year = \&yday;

sub isdst {
    my $time = shift;
    $time->[c_isdst];
}

*daylight_savings = \&isdst;

# Thanks to Tony Olekshy <olekshy@cs.ualberta.ca> for this algorithm
sub tzoffset {
    my $time = shift;

    return Time::Seconds->new(0) unless $time->[c_islocal];

    my $epoch = $time->epoch;

    my $j = sub {

        my ($s,$n,$h,$d,$m,$y) = @_; $m += 1; $y += 1900;

        $time->_jd($y, $m, $d, $h, $n, $s);

    };

    # Compute floating offset in hours.
    #
    # Note use of crt methods so the tz is properly set...
    # See: http://perlmonks.org/?node_id=820347
    my $delta = 24 * ($j->(_crt_localtime($epoch)) - $j->(_crt_gmtime($epoch)));

    # Return value in seconds rounded to nearest minute.
    return Time::Seconds->new( int($delta * 60 + ($delta >= 0 ? 0.5 : -0.5)) * 60 );
}

sub epoch {
    my $time = shift;
    if (defined($time->[c_epoch])) {
        return $time->[c_epoch];
    }
    else {
        my $epoch = $time->[c_islocal] ?
          timelocal(@{$time}[c_sec .. c_mon], $time->[c_year]+1900)
          :
          timegm(@{$time}[c_sec .. c_mon], $time->[c_year]+1900);
        $time->[c_epoch] = $epoch;
        return $epoch;
    }
}

sub hms {
    my $time = shift;
    my $sep = @_ ? shift(@_) : $TIME_SEP;
    sprintf("%02d$sep%02d$sep%02d", $time->[c_hour], $time->[c_min], $time->[c_sec]);
}

*time = \&hms;

sub ymd {
    my $time = shift;
    my $sep = @_ ? shift(@_) : $DATE_SEP;
    sprintf("%d$sep%02d$sep%02d", $time->year, $time->mon, $time->[c_mday]);
}

*date = \&ymd;

sub mdy {
    my $time = shift;
    my $sep = @_ ? shift(@_) : $DATE_SEP;
    sprintf("%02d$sep%02d$sep%d", $time->mon, $time->[c_mday], $time->year);
}

sub dmy {
    my $time = shift;
    my $sep = @_ ? shift(@_) : $DATE_SEP;
    sprintf("%02d$sep%02d$sep%d", $time->[c_mday], $time->mon, $time->year);
}

sub datetime {
    my $time = shift;
    my %seps = (date => $DATE_SEP, T => 'T', time => $TIME_SEP, @_);
    return join($seps{T}, $time->date($seps{date}), $time->time($seps{time}));
}



# Julian Day is always calculated for UT regardless
# of local time
sub julian_day {
    my $time = shift;
    # Correct for localtime
    $time = $time->gmtime( $time->epoch ) if $time->[c_islocal];

    # Calculate the Julian day itself
    my $jd = $time->_jd( $time->year, $time->mon, $time->mday,
                        $time->hour, $time->min, $time->sec);

    return $jd;
}

# MJD is defined as JD - 2400000.5 days
sub mjd {
    return shift->julian_day - 2_400_000.5;
}

# Internal calculation of Julian date. Needed here so that
# both tzoffset and mjd/jd methods can share the code
# Algorithm from Hatcher 1984 (QJRAS 25, 53-55), and
#  Hughes et al, 1989, MNRAS, 238, 15
# See: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989MNRAS.238.1529H&db_key=AST
# for more details

sub _jd {
    my $self = shift;
    my ($y, $m, $d, $h, $n, $s) = @_;

    # Adjust input parameters according to the month
    $y = ( $m > 2 ? $y : $y - 1);
    $m = ( $m > 2 ? $m - 3 : $m + 9);

    # Calculate the Julian Date (assuming Julian calendar)
    my $J = int( 365.25 *( $y + 4712) )
      + int( (30.6 * $m) + 0.5)
        + 59
          + $d
            - 0.5;

    # Calculate the Gregorian Correction (since we have Gregorian dates)
    my $G = 38 - int( 0.75 * int(49+($y/100)));

    # Calculate the actual Julian Date
    my $JD = $J + $G;

    # Modify to include hours/mins/secs in floating portion.
    return $JD + ($h + ($n + $s / 60) / 60) / 24;
}

sub week {
    my $self = shift;

    my $J  = $self->julian_day;
    # Julian day is independent of time zone so add on tzoffset
    # if we are using local time here since we want the week day
    # to reflect the local time rather than UTC
    $J += ($self->tzoffset/(24*3600)) if $self->[c_islocal];

    # Now that we have the Julian day including fractions
    # convert it to an integer Julian Day Number using nearest
    # int (since the day changes at midday we convert all Julian
    # dates to following midnight).
    $J = int($J+0.5);

    use integer;
    my $d4 = ((($J + 31741 - ($J % 7)) % 146097) % 36524) % 1461;
    my $L  = $d4 / 1460;
    my $d1 = (($d4 - $L) % 365) + $L;
    return $d1 / 7 + 1;
}

sub _is_leap_year {
    my $year = shift;
    return (($year %4 == 0) && !($year % 100 == 0)) || ($year % 400 == 0)
               ? 1 : 0;
}

sub is_leap_year {
    my $time = shift;
    my $year = $time->year;
    return _is_leap_year($year);
}

my @MON_LAST = qw(31 28 31 30 31 30 31 31 30 31 30 31);

sub month_last_day {
    my $time = shift;
    my $year = $time->year;
    my $_mon = $time->_mon;
    return $MON_LAST[$_mon] + ($_mon == 1 ? _is_leap_year($year) : 0);
}

#since %z and %Z are not portable lets just
#parse it out before calling native strftime
#(but only if we are in UTC time)
my %GMT_REPR = (
    '%z' => '+0000',
    '%Z' => 'UTC',
);

sub strftime {
    my $time = shift;
    my $format = @_ ? shift(@_) : '%a, %d %b %Y %H:%M:%S %Z';
    if (! $time->[c_islocal]) {
        $format =~ s/(%.)/$GMT_REPR{$1} || $1/eg;
    }

    return _strftime($format, $time->epoch, $time->[c_islocal]);
}

sub strptime {
    my $time = shift;
    my $string = shift;
    my $format = @_ ? shift(@_) : "%a, %d %b %Y %H:%M:%S %Z";
    my @vals = _strptime($string, $format);
#    warn(sprintf("got vals: %d-%d-%d %d:%d:%d\n", reverse(@vals)));
    return scalar $time->_mktime(\@vals, (ref($time) ? $time->[c_islocal] : 0));
}

sub day_list {
    shift if ref($_[0]) && $_[0]->isa(__PACKAGE__); # strip first if called as a method
    my @old = @DAY_LIST;
    if (@_) {
        @DAY_LIST = @_;
    }
    return @old;
}

sub mon_list {
    shift if ref($_[0]) && $_[0]->isa(__PACKAGE__); # strip first if called as a method
    my @old = @MON_LIST;
    if (@_) {
        @MON_LIST = @_;
    }
    return @old;
}

sub time_separator {
    shift if ref($_[0]) && $_[0]->isa(__PACKAGE__);
    my $old = $TIME_SEP;
    if (@_) {
        $TIME_SEP = $_[0];
    }
    return $old;
}

sub date_separator {
    shift if ref($_[0]) && $_[0]->isa(__PACKAGE__);
    my $old = $DATE_SEP;
    if (@_) {
        $DATE_SEP = $_[0];
    }
    return $old;
}

use overload '""' => \&cdate,
             'cmp' => \&str_compare,
             'fallback' => undef;

sub cdate {
    my $time = shift;
    if ($time->[c_islocal]) {
        return scalar(CORE::localtime($time->epoch));
    }
    else {
        return scalar(CORE::gmtime($time->epoch));
    }
}

sub str_compare {
    my ($lhs, $rhs, $reverse) = @_;
    if (UNIVERSAL::isa($rhs, 'Time::Piece')) {
        $rhs = "$rhs";
    }
    return $reverse ? $rhs cmp $lhs->cdate : $lhs->cdate cmp $rhs;
}

use overload
        '-' => \&subtract,
        '+' => \&add;

sub subtract {
    my $time = shift;
    my $rhs = shift;
    if (UNIVERSAL::isa($rhs, 'Time::Seconds')) {
        $rhs = $rhs->seconds;
    }

    if (shift)
    {
	# SWAPED is set (so someone tried an expression like NOTDATE - DATE).
	# Imitate Perl's standard behavior and return the result as if the
	# string $time resolves to was subtracted from NOTDATE.  This way,
	# classes which override this one and which have a stringify function
	# that resolves to something that looks more like a number don't need
	# to override this function.
	return $rhs - "$time";
    }

    if (UNIVERSAL::isa($rhs, 'Time::Piece')) {
        return Time::Seconds->new($time->epoch - $rhs->epoch);
    }
    else {
        # rhs is seconds.
        return $time->_mktime(($time->epoch - $rhs), $time->[c_islocal]);
    }
}

sub add {
    my $time = shift;
    my $rhs = shift;
    if (UNIVERSAL::isa($rhs, 'Time::Seconds')) {
        $rhs = $rhs->seconds;
    }
    croak "Invalid rhs of addition: $rhs" if ref($rhs);

    return $time->_mktime(($time->epoch + $rhs), $time->[c_islocal]);
}

use overload
        '<=>' => \&compare;

sub get_epochs {
    my ($lhs, $rhs, $reverse) = @_;
    if (!UNIVERSAL::isa($rhs, 'Time::Piece')) {
        $rhs = $lhs->new($rhs);
    }
    if ($reverse) {
        return $rhs->epoch, $lhs->epoch;
    }
    return $lhs->epoch, $rhs->epoch;
}

sub compare {
    my ($lhs, $rhs) = get_epochs(@_);
    return $lhs <=> $rhs;
}

sub add_months {
    my ($time, $num_months) = @_;

    croak("add_months requires a number of months") unless defined($num_months);

    my $final_month = $time->_mon + $num_months;
    my $num_years = 0;
    if ($final_month > 11 || $final_month < 0) {
        # these two ops required because we have no POSIX::floor and don't
        # want to load POSIX.pm
        if ($final_month < 0 && $final_month % 12 == 0) {
            $num_years = int($final_month / 12) + 1;
        }
        else {
            $num_years = int($final_month / 12);
        }
        $num_years-- if ($final_month < 0);

        $final_month = $final_month % 12;
    }

    my @vals = _mini_mktime($time->sec, $time->min, $time->hour,
                            $time->mday, $final_month, $time->year - 1900 + $num_years);
    # warn(sprintf("got %d vals: %d-%d-%d %d:%d:%d [%d]\n", scalar(@vals), reverse(@vals), $time->[c_islocal]));
    return scalar $time->_mktime(\@vals, $time->[c_islocal]);
}

sub add_years {
    my ($time, $years) = @_;
    $time->add_months($years * 12);
}

1;
__END__

=head1 NAME

Time::Piece - Object Oriented time objects

=head1 SYNOPSIS

    use Time::Piece;
    
    my $t = localtime;
    print "Time is $t\n";
    print "Year is ", $t->year, "\n";

=head1 DESCRIPTION

This module replaces the standard C<localtime> and C<gmtime> functions with
implementations that return objects. It does so in a backwards
compatible manner, so that using localtime/gmtime in the way documented
in perlfunc will still return what you expect.

The module actually implements most of an interface described by
Larry Wall on the perl5-porters mailing list here:
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2000-01/msg00241.html

=head1 USAGE

After importing this module, when you use localtime or gmtime in a scalar
context, rather than getting an ordinary scalar string representing the
date and time, you get a Time::Piece object, whose stringification happens
to produce the same effect as the localtime and gmtime functions. There is 
also a new() constructor provided, which is the same as localtime(), except
when passed a Time::Piece object, in which case it's a copy constructor. The
following methods are available on the object:

    $t->sec                 # also available as $t->second
    $t->min                 # also available as $t->minute
    $t->hour                # 24 hour
    $t->mday                # also available as $t->day_of_month
    $t->mon                 # 1 = January
    $t->_mon                # 0 = January
    $t->monname             # Feb
    $t->month               # same as $t->monname
    $t->fullmonth           # February
    $t->year                # based at 0 (year 0 AD is, of course 1 BC)
    $t->_year               # year minus 1900
    $t->yy                  # 2 digit year
    $t->wday                # 1 = Sunday
    $t->_wday               # 0 = Sunday
    $t->day_of_week         # 0 = Sunday
    $t->wdayname            # Tue
    $t->day                 # same as wdayname
    $t->fullday             # Tuesday
    $t->yday                # also available as $t->day_of_year, 0 = Jan 01
    $t->isdst               # also available as $t->daylight_savings

    $t->hms                 # 12:34:56
    $t->hms(".")            # 12.34.56
    $t->time                # same as $t->hms

    $t->ymd                 # 2000-02-29
    $t->date                # same as $t->ymd
    $t->mdy                 # 02-29-2000
    $t->mdy("/")            # 02/29/2000
    $t->dmy                 # 29-02-2000
    $t->dmy(".")            # 29.02.2000
    $t->datetime            # 2000-02-29T12:34:56 (ISO 8601)
    $t->cdate               # Tue Feb 29 12:34:56 2000
    "$t"                    # same as $t->cdate

    $t->epoch               # seconds since the epoch
    $t->tzoffset            # timezone offset in a Time::Seconds object

    $t->julian_day          # number of days since Julian period began
    $t->mjd                 # modified Julian date (JD-2400000.5 days)

    $t->week                # week number (ISO 8601)

    $t->is_leap_year        # true if it's a leap year
    $t->month_last_day      # 28-31

    $t->time_separator($s)  # set the default separator (default ":")
    $t->date_separator($s)  # set the default separator (default "-")
    $t->day_list(@days)     # set the default weekdays
    $t->mon_list(@days)     # set the default months

    $t->strftime(FORMAT)    # same as POSIX::strftime (without the overhead
                            # of the full POSIX extension)
    $t->strftime()          # "Tue, 29 Feb 2000 12:34:56 GMT"
    
    Time::Piece->strptime(STRING, FORMAT)
                            # see strptime man page. Creates a new
                            # Time::Piece object

Note that C<localtime> and C<gmtime> are not listed above.  If called as
methods on a Time::Piece object, they act as constructors, returning a new
Time::Piece object for the current time.  In other words: they're not useful as
methods.

=head2 Local Locales

Both wdayname (day) and monname (month) allow passing in a list to use
to index the name of the days against. This can be useful if you need
to implement some form of localisation without actually installing or
using locales.

  my @days = qw( Dimanche Lundi Merdi Mercredi Jeudi Vendredi Samedi );

  my $french_day = localtime->day(@days);

These settings can be overridden globally too:

  Time::Piece::day_list(@days);

Or for months:

  Time::Piece::mon_list(@months);

And locally for months:

  print localtime->month(@months);

=head2 Date Calculations

It's possible to use simple addition and subtraction of objects:

    use Time::Seconds;
    
    my $seconds = $t1 - $t2;
    $t1 += ONE_DAY; # add 1 day (constant from Time::Seconds)

The following are valid ($t1 and $t2 are Time::Piece objects):

    $t1 - $t2; # returns Time::Seconds object
    $t1 - 42; # returns Time::Piece object
    $t1 + 533; # returns Time::Piece object

However adding a Time::Piece object to another Time::Piece object
will cause a runtime error.

Note that the first of the above returns a Time::Seconds object, so
while examining the object will print the number of seconds (because
of the overloading), you can also get the number of minutes, hours,
days, weeks and years in that delta, using the Time::Seconds API.

In addition to adding seconds, there are two APIs for adding months and
years:

    $t->add_months(6);
    $t->add_years(5);

The months and years can be negative for subtractions. Note that there
is some "strange" behaviour when adding and subtracting months at the
ends of months. Generally when the resulting month is shorter than the
starting month then the number of overlap days is added. For example
subtracting a month from 2008-03-31 will not result in 2008-02-31 as this
is an impossible date. Instead you will get 2008-03-02. This appears to
be consistent with other date manipulation tools.

=head2 Date Comparisons

Date comparisons are also possible, using the full suite of "<", ">",
"<=", ">=", "<=>", "==" and "!=".

=head2 Date Parsing

Time::Piece has a built-in strptime() function (from FreeBSD), allowing
you incredibly flexible date parsing routines. For example:

  my $t = Time::Piece->strptime("Sunday 3rd Nov, 1943",
                                "%A %drd %b, %Y");
  
  print $t->strftime("%a, %d %b %Y");

Outputs:

  Wed, 03 Nov 1943

(see, it's even smart enough to fix my obvious date bug)

For more information see "man strptime", which should be on all unix
systems.

Alternatively look here: http://www.unix.com/man-page/FreeBSD/3/strftime/

=head2 YYYY-MM-DDThh:mm:ss

The ISO 8601 standard defines the date format to be YYYY-MM-DD, and
the time format to be hh:mm:ss (24 hour clock), and if combined, they
should be concatenated with date first and with a capital 'T' in front
of the time.

=head2 Week Number

The I<week number> may be an unknown concept to some readers.  The ISO
8601 standard defines that weeks begin on a Monday and week 1 of the
year is the week that includes both January 4th and the first Thursday
of the year.  In other words, if the first Monday of January is the
2nd, 3rd, or 4th, the preceding days of the January are part of the
last week of the preceding year.  Week numbers range from 1 to 53.

=head2 Global Overriding

Finally, it's possible to override localtime and gmtime everywhere, by
including the ':override' tag in the import list:

    use Time::Piece ':override';

=head1 CAVEATS

=head2 Setting $ENV{TZ} in Threads on Win32

Note that when using perl in the default build configuration on Win32
(specifically, when perl is built with PERL_IMPLICIT_SYS), each perl
interpreter maintains its own copy of the environment and only the main
interpreter will update the process environment seen by strftime.

Therefore, if you make changes to $ENV{TZ} from inside a thread other than
the main thread then those changes will not be seen by strftime if you
subsequently call that with the %Z formatting code. You must change $ENV{TZ}
in the main thread to have the desired effect in this case (and you must
also call _tzset() in the main thread to register the environment change).

Furthermore, remember that this caveat also applies to fork(), which is
emulated by threads on Win32.

=head2 Use of epoch seconds

This module internally uses the epoch seconds system that is provided via
the perl C<time()> function and supported by C<gmtime()> and C<localtime()>.

If your perl does not support times larger than C<2^31> seconds then this
module is likely to fail at processing dates beyond the year 2038. There are
moves afoot to fix that in perl. Alternatively use 64 bit perl. Or if none
of those are options, use the L<DateTime> module which has support for years
well into the future and past.

=head1 AUTHOR

Matt Sergeant, matt@sergeant.org
Jarkko Hietaniemi, jhi@iki.fi (while creating Time::Piece for core perl)

=head1 COPYRIGHT AND LICENSE

Copyright 2001, Larry Wall.

This module is free software, you may distribute it under the same terms
as Perl.

=head1 SEE ALSO

The excellent Calendar FAQ at http://www.tondering.dk/claus/calendar.html

=head1 BUGS

The test harness leaves much to be desired. Patches welcome.

=cut
PK56�Z*�$.	.	localtime.pmnu�[���package Time::localtime;
use strict;
use 5.006_001;

use Time::tm;

our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
BEGIN {
    use Exporter   ();
    @ISA         = qw(Exporter Time::tm);
    @EXPORT      = qw(localtime ctime);
    @EXPORT_OK   = qw(  
			$tm_sec $tm_min $tm_hour $tm_mday 
			$tm_mon $tm_year $tm_wday $tm_yday 
			$tm_isdst
		    );
    %EXPORT_TAGS = ( FIELDS => [ @EXPORT_OK, @EXPORT ] );
    $VERSION     = 1.02;
}
use vars      @EXPORT_OK;

sub populate (@) {
    return unless @_;
    my $tmob = Time::tm->new();
    @$tmob = (
		$tm_sec, $tm_min, $tm_hour, $tm_mday, 
		$tm_mon, $tm_year, $tm_wday, $tm_yday, 
		$tm_isdst )
	    = @_;
    return $tmob;
} 

sub localtime (;$) { populate CORE::localtime(@_ ? shift : time)}
sub ctime (;$)     { scalar   CORE::localtime(@_ ? shift : time) } 

1;

__END__

=head1 NAME

Time::localtime - by-name interface to Perl's built-in localtime() function

=head1 SYNOPSIS

 use Time::localtime;
 printf "Year is %d\n", localtime->year() + 1900;

 $now = ctime();

 use Time::localtime;
 use File::stat;
 $date_string = ctime(stat($file)->mtime);

=head1 DESCRIPTION

This module's default exports override the core localtime() function,
replacing it with a version that returns "Time::tm" objects.
This object has methods that return the similarly named structure field
name from the C's tm structure from F<time.h>; namely sec, min, hour,
mday, mon, year, wday, yday, and isdst.

You may also import all the structure fields directly into your namespace
as regular variables using the :FIELDS import tag.  (Note that this still
overrides your core functions.)  Access these fields as
variables named with a preceding C<tm_> in front their method names.
Thus, C<$tm_obj-E<gt>mday()> corresponds to $tm_mday if you import
the fields.

The ctime() function provides a way of getting at the 
scalar sense of the original CORE::localtime() function.

To access this functionality without the core overrides,
pass the C<use> an empty import list, and then access
function functions with their full qualified names.
On the other hand, the built-ins are still available
via the C<CORE::> pseudo-package.

=head1 NOTE

While this class is currently implemented using the Class::Struct
module to build a struct-like class, you shouldn't rely upon this.

=head1 AUTHOR

Tom Christiansen
PK56�Z�s���tm.pmnu�[���package Time::tm;
use strict;

our $VERSION = '1.00';

use Class::Struct qw(struct);
struct('Time::tm' => [
     map { $_ => '$' } qw{ sec min hour mday mon year wday yday isdst }
]);

1;
__END__

=head1 NAME

Time::tm - internal object used by Time::gmtime and Time::localtime

=head1 SYNOPSIS

Don't use this module directly.

=head1 DESCRIPTION

This module is used internally as a base class by Time::localtime And
Time::gmtime functions.  It creates a Time::tm struct object which is
addressable just like's C's tm structure from F<time.h>; namely with sec,
min, hour, mday, mon, year, wday, yday, and isdst.

This class is an internal interface only. 

=head1 AUTHOR

Tom Christiansen
PK56�Z8��,�	�		gmtime.pmnu�[���package Time::gmtime;
use strict;
use 5.006_001;

use Time::tm;

our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
BEGIN { 
    use Exporter   ();
    @ISA         = qw(Exporter Time::tm);
    @EXPORT      = qw(gmtime gmctime);
    @EXPORT_OK   = qw(  
			$tm_sec $tm_min $tm_hour $tm_mday 
			$tm_mon $tm_year $tm_wday $tm_yday 
			$tm_isdst
		    );
    %EXPORT_TAGS = ( FIELDS => [ @EXPORT_OK, @EXPORT ] );
    $VERSION     = 1.03;
}
use vars      @EXPORT_OK;

sub populate (@) {
    return unless @_;
    my $tmob = Time::tm->new();
    @$tmob = (
		$tm_sec, $tm_min, $tm_hour, $tm_mday, 
		$tm_mon, $tm_year, $tm_wday, $tm_yday, 
		$tm_isdst )
	    = @_;
    return $tmob;
} 

sub gmtime (;$)    { populate CORE::gmtime(@_ ? shift : time)}
sub gmctime (;$)   { scalar   CORE::gmtime(@_ ? shift : time)} 

1;
__END__

=head1 NAME

Time::gmtime - by-name interface to Perl's built-in gmtime() function

=head1 SYNOPSIS

 use Time::gmtime;
 $gm = gmtime();
 printf "The day in Greenwich is %s\n", 
    (qw(Sun Mon Tue Wed Thu Fri Sat Sun))[ $gm->wday() ];

 use Time::gmtime qw(:FIELDS);
 gmtime();
 printf "The day in Greenwich is %s\n", 
    (qw(Sun Mon Tue Wed Thu Fri Sat Sun))[ $tm_wday ];

 $now = gmctime();

 use Time::gmtime;
 use File::stat;
 $date_string = gmctime(stat($file)->mtime);

=head1 DESCRIPTION

This module's default exports override the core gmtime() function,
replacing it with a version that returns "Time::tm" objects.
This object has methods that return the similarly named structure field
name from the C's tm structure from F<time.h>; namely sec, min, hour,
mday, mon, year, wday, yday, and isdst.

You may also import all the structure fields directly into your namespace
as regular variables using the :FIELDS import tag.  (Note that this
still overrides your core functions.)  Access these fields as variables
named with a preceding C<tm_> in front their method names.  Thus,
C<$tm_obj-E<gt>mday()> corresponds to $tm_mday if you import the fields.

The gmctime() function provides a way of getting at the 
scalar sense of the original CORE::gmtime() function.

To access this functionality without the core overrides,
pass the C<use> an empty import list, and then access
function functions with their full qualified names.
On the other hand, the built-ins are still available
via the C<CORE::> pseudo-package.

=head1 NOTE

While this class is currently implemented using the Class::Struct
module to build a struct-like class, you shouldn't rely upon this.

=head1 AUTHOR

Tom Christiansen
PK�c[��z�8`8`HiRes.pmnu�[���package Time::HiRes;

{ use 5.006; }
use strict;

require Exporter;
use XSLoader ();

our @ISA = qw(Exporter);

our @EXPORT = qw( );
# TODO: this list is a superset of the @names in
# Makefile.PL:doConstants(), automate this somehow.
our @EXPORT_OK = qw (usleep sleep ualarm alarm gettimeofday time tv_interval
		 getitimer setitimer nanosleep clock_gettime clock_getres
		 clock clock_nanosleep
		 CLOCKS_PER_SEC
		 CLOCK_BOOTTIME
		 CLOCK_HIGHRES
		 CLOCK_MONOTONIC
		 CLOCK_MONOTONIC_COARSE
		 CLOCK_MONOTONIC_FAST
		 CLOCK_MONOTONIC_PRECISE
		 CLOCK_MONOTONIC_RAW
		 CLOCK_MONOTONIC_RAW_APPROX
		 CLOCK_PROCESS_CPUTIME_ID
		 CLOCK_PROF
		 CLOCK_REALTIME
		 CLOCK_REALTIME_COARSE
		 CLOCK_REALTIME_FAST
		 CLOCK_REALTIME_PRECISE
		 CLOCK_REALTIME_RAW
		 CLOCK_SECOND
		 CLOCK_SOFTTIME
		 CLOCK_THREAD_CPUTIME_ID
		 CLOCK_TIMEOFDAY
		 CLOCK_UPTIME
		 CLOCK_UPTIME_COARSE
		 CLOCK_UPTIME_FAST
		 CLOCK_UPTIME_PRECISE
		 CLOCK_UPTIME_RAW
		 CLOCK_UPTIME_RAW_APPROX
		 CLOCK_VIRTUAL
		 ITIMER_PROF
		 ITIMER_REAL
		 ITIMER_REALPROF
		 ITIMER_VIRTUAL
		 TIMER_ABSTIME
		 d_usleep d_ualarm d_gettimeofday d_getitimer d_setitimer
		 d_nanosleep d_clock_gettime d_clock_getres
		 d_clock d_clock_nanosleep d_hires_stat
		 d_futimens d_utimensat d_hires_utime
		 stat lstat utime
		);

our $VERSION = '1.9758';
our $XS_VERSION = $VERSION;
$VERSION = eval $VERSION;

our $AUTOLOAD;
sub AUTOLOAD {
    my $constname;
    ($constname = $AUTOLOAD) =~ s/.*:://;
    # print "AUTOLOAD: constname = $constname ($AUTOLOAD)\n";
    die "&Time::HiRes::constant not defined" if $constname eq 'constant';
    my ($error, $val) = constant($constname);
    # print "AUTOLOAD: error = $error, val = $val\n";
    if ($error) {
        my (undef,$file,$line) = caller;
        die "$error at $file line $line.\n";
    }
    {
	no strict 'refs';
	*$AUTOLOAD = sub { $val };
    }
    goto &$AUTOLOAD;
}

sub import {
    my $this = shift;
    for my $i (@_) {
	if (($i eq 'clock_getres'    && !&d_clock_getres)    ||
	    ($i eq 'clock_gettime'   && !&d_clock_gettime)   ||
	    ($i eq 'clock_nanosleep' && !&d_clock_nanosleep) ||
	    ($i eq 'clock'           && !&d_clock)           ||
	    ($i eq 'nanosleep'       && !&d_nanosleep)       ||
	    ($i eq 'usleep'          && !&d_usleep)          ||
	    ($i eq 'utime'           && !&d_hires_utime)     ||
	    ($i eq 'ualarm'          && !&d_ualarm)) {
	    require Carp;
	    Carp::croak("Time::HiRes::$i(): unimplemented in this platform");
	}
    }
    Time::HiRes->export_to_level(1, $this, @_);
}

XSLoader::load( 'Time::HiRes', $XS_VERSION );

# Preloaded methods go here.

# Autoload methods go after =cut, and are processed by the autosplit program.

1;
__END__

=head1 NAME

Time::HiRes - High resolution alarm, sleep, gettimeofday, interval timers

=head1 SYNOPSIS

  use Time::HiRes qw( usleep ualarm gettimeofday tv_interval nanosleep
		      clock_gettime clock_getres clock_nanosleep clock
                      stat lstat utime);

  usleep ($microseconds);
  nanosleep ($nanoseconds);

  ualarm ($microseconds);
  ualarm ($microseconds, $interval_microseconds);

  $t0 = [gettimeofday];
  ($seconds, $microseconds) = gettimeofday;

  $elapsed = tv_interval ( $t0, [$seconds, $microseconds]);
  $elapsed = tv_interval ( $t0, [gettimeofday]);
  $elapsed = tv_interval ( $t0 );

  use Time::HiRes qw ( time alarm sleep );

  $now_fractions = time;
  sleep ($floating_seconds);
  alarm ($floating_seconds);
  alarm ($floating_seconds, $floating_interval);

  use Time::HiRes qw( setitimer getitimer );

  setitimer ($which, $floating_seconds, $floating_interval );
  getitimer ($which);

  use Time::HiRes qw( clock_gettime clock_getres clock_nanosleep
		      ITIMER_REAL ITIMER_VIRTUAL ITIMER_PROF
                      ITIMER_REALPROF );

  $realtime   = clock_gettime(CLOCK_REALTIME);
  $resolution = clock_getres(CLOCK_REALTIME);

  clock_nanosleep(CLOCK_REALTIME, 1.5e9);
  clock_nanosleep(CLOCK_REALTIME, time()*1e9 + 10e9, TIMER_ABSTIME);

  my $ticktock = clock();

  use Time::HiRes qw( stat lstat );

  my @stat = stat("file");
  my @stat = stat(FH);
  my @stat = lstat("file");

  use Time::HiRes qw( utime );
  utime $floating_seconds, $floating_seconds, file...;

=head1 DESCRIPTION

The C<Time::HiRes> module implements a Perl interface to the
C<usleep>, C<nanosleep>, C<ualarm>, C<gettimeofday>, and
C<setitimer>/C<getitimer> system calls, in other words, high
resolution time and timers. See the L</EXAMPLES> section below and the
test scripts for usage; see your system documentation for the
description of the underlying C<nanosleep> or C<usleep>, C<ualarm>,
C<gettimeofday>, and C<setitimer>/C<getitimer> calls.

If your system lacks C<gettimeofday()> or an emulation of it you don't
get C<gettimeofday()> or the one-argument form of C<tv_interval()>.
If your system lacks all of C<nanosleep()>, C<usleep()>,
C<select()>, and C<poll>, you don't get C<Time::HiRes::usleep()>,
C<Time::HiRes::nanosleep()>, or C<Time::HiRes::sleep()>.
If your system lacks both C<ualarm()> and C<setitimer()> you don't get
C<Time::HiRes::ualarm()> or C<Time::HiRes::alarm()>.

If you try to import an unimplemented function in the C<use> statement
it will fail at compile time.

If your subsecond sleeping is implemented with C<nanosleep()> instead
of C<usleep()>, you can mix subsecond sleeping with signals since
C<nanosleep()> does not use signals.  This, however, is not portable,
and you should first check for the truth value of
C<&Time::HiRes::d_nanosleep> to see whether you have nanosleep, and
then carefully read your C<nanosleep()> C API documentation for any
peculiarities.

If you are using C<nanosleep> for something else than mixing sleeping
with signals, give some thought to whether Perl is the tool you should
be using for work requiring nanosecond accuracies.

Remember that unless you are working on a I<hard realtime> system,
any clocks and timers will be imprecise, especially so if you are working
in a pre-emptive multiuser system.  Understand the difference between
I<wallclock time> and process time (in UNIX-like systems the sum of
I<user> and I<system> times).  Any attempt to sleep for X seconds will
most probably end up sleeping B<more> than that, but don't be surprised
if you end up sleeping slightly B<less>.

The following functions can be imported from this module.
No functions are exported by default.

=over 4

=item gettimeofday ()

In array context returns a two-element array with the seconds and
microseconds since the epoch.  In scalar context returns floating
seconds like C<Time::HiRes::time()> (see below).

=item usleep ( $useconds )

Sleeps for the number of microseconds (millionths of a second)
specified.  Returns the number of microseconds actually slept.
Can sleep for more than one second, unlike the C<usleep> system call.
Can also sleep for zero seconds, which often works like a I<thread yield>.
See also C<Time::HiRes::usleep()>, C<Time::HiRes::sleep()>, and
C<Time::HiRes::clock_nanosleep()>.

Do not expect usleep() to be exact down to one microsecond.

=item nanosleep ( $nanoseconds )

Sleeps for the number of nanoseconds (1e9ths of a second) specified.
Returns the number of nanoseconds actually slept (accurate only to
microseconds, the nearest thousand of them).  Can sleep for more than
one second.  Can also sleep for zero seconds, which often works like
a I<thread yield>.  See also C<Time::HiRes::sleep()>,
C<Time::HiRes::usleep()>, and C<Time::HiRes::clock_nanosleep()>.

Do not expect nanosleep() to be exact down to one nanosecond.
Getting even accuracy of one thousand nanoseconds is good.

=item ualarm ( $useconds [, $interval_useconds ] )

Issues a C<ualarm> call; the C<$interval_useconds> is optional and
will be zero if unspecified, resulting in C<alarm>-like behaviour.

Returns the remaining time in the alarm in microseconds, or C<undef>
if an error occurred.

ualarm(0) will cancel an outstanding ualarm().

Note that the interaction between alarms and sleeps is unspecified.

=item tv_interval 

tv_interval ( $ref_to_gettimeofday [, $ref_to_later_gettimeofday] )

Returns the floating seconds between the two times, which should have
been returned by C<gettimeofday()>. If the second argument is omitted,
then the current time is used.

=item time ()

Returns a floating seconds since the epoch. This function can be
imported, resulting in a nice drop-in replacement for the C<time>
provided with core Perl; see the L</EXAMPLES> below.

B<NOTE 1>: This higher resolution timer can return values either less
or more than the core C<time()>, depending on whether your platform
rounds the higher resolution timer values up, down, or to the nearest second
to get the core C<time()>, but naturally the difference should be never
more than half a second.  See also L</clock_getres>, if available
in your system.

B<NOTE 2>: Since Sunday, September 9th, 2001 at 01:46:40 AM GMT, when
the C<time()> seconds since epoch rolled over to 1_000_000_000, the
default floating point format of Perl and the seconds since epoch have
conspired to produce an apparent bug: if you print the value of
C<Time::HiRes::time()> you seem to be getting only five decimals, not
six as promised (microseconds).  Not to worry, the microseconds are
there (assuming your platform supports such granularity in the first
place).  What is going on is that the default floating point format of
Perl only outputs 15 digits.  In this case that means ten digits
before the decimal separator and five after.  To see the microseconds
you can use either C<printf>/C<sprintf> with C<"%.6f">, or the
C<gettimeofday()> function in list context, which will give you the
seconds and microseconds as two separate values.

=item sleep ( $floating_seconds )

Sleeps for the specified amount of seconds.  Returns the number of
seconds actually slept (a floating point value).  This function can
be imported, resulting in a nice drop-in replacement for the C<sleep>
provided with perl, see the L</EXAMPLES> below.

Note that the interaction between alarms and sleeps is unspecified.

=item alarm ( $floating_seconds [, $interval_floating_seconds ] )

The C<SIGALRM> signal is sent after the specified number of seconds.
Implemented using C<setitimer()> if available, C<ualarm()> if not.
The C<$interval_floating_seconds> argument is optional and will be
zero if unspecified, resulting in C<alarm()>-like behaviour.  This
function can be imported, resulting in a nice drop-in replacement for
the C<alarm> provided with perl, see the L</EXAMPLES> below.

Returns the remaining time in the alarm in seconds, or C<undef>
if an error occurred.

B<NOTE 1>: With some combinations of operating systems and Perl
releases C<SIGALRM> restarts C<select()>, instead of interrupting it.
This means that an C<alarm()> followed by a C<select()> may together
take the sum of the times specified for the C<alarm()> and the
C<select()>, not just the time of the C<alarm()>.

Note that the interaction between alarms and sleeps is unspecified.

=item setitimer ( $which, $floating_seconds [, $interval_floating_seconds ] )

Start up an interval timer: after a certain time, a signal ($which) arrives,
and more signals may keep arriving at certain intervals.  To disable
an "itimer", use C<$floating_seconds> of zero.  If the
C<$interval_floating_seconds> is set to zero (or unspecified), the
timer is disabled B<after> the next delivered signal.

Use of interval timers may interfere with C<alarm()>, C<sleep()>,
and C<usleep()>.  In standard-speak the "interaction is unspecified",
which means that I<anything> may happen: it may work, it may not.

In scalar context, the remaining time in the timer is returned.

In list context, both the remaining time and the interval are returned.

There are usually three or four interval timers (signals) available: the
C<$which> can be C<ITIMER_REAL>, C<ITIMER_VIRTUAL>, C<ITIMER_PROF>, or
C<ITIMER_REALPROF>.  Note that which ones are available depends: true
UNIX platforms usually have the first three, but only Solaris seems to
have C<ITIMER_REALPROF> (which is used to profile multithreaded programs).
Win32 unfortunately does not have interval timers.

C<ITIMER_REAL> results in C<alarm()>-like behaviour.  Time is counted in
I<real time>; that is, wallclock time.  C<SIGALRM> is delivered when
the timer expires.

C<ITIMER_VIRTUAL> counts time in (process) I<virtual time>; that is,
only when the process is running.  In multiprocessor/user/CPU systems
this may be more or less than real or wallclock time.  (This time is
also known as the I<user time>.)  C<SIGVTALRM> is delivered when the
timer expires.

C<ITIMER_PROF> counts time when either the process virtual time or when
the operating system is running on behalf of the process (such as I/O).
(This time is also known as the I<system time>.)  (The sum of user
time and system time is known as the I<CPU time>.)  C<SIGPROF> is
delivered when the timer expires.  C<SIGPROF> can interrupt system calls.

The semantics of interval timers for multithreaded programs are
system-specific, and some systems may support additional interval
timers.  For example, it is unspecified which thread gets the signals.
See your C<setitimer()> documentation.

=item getitimer ( $which )

Return the remaining time in the interval timer specified by C<$which>.

In scalar context, the remaining time is returned.

In list context, both the remaining time and the interval are returned.
The interval is always what you put in using C<setitimer()>.

=item clock_gettime ( $which )

Return as seconds the current value of the POSIX high resolution timer
specified by C<$which>.  All implementations that support POSIX high
resolution timers are supposed to support at least the C<$which> value
of C<CLOCK_REALTIME>, which is supposed to return results close to the
results of C<gettimeofday>, or the number of seconds since 00:00:00:00
January 1, 1970 Greenwich Mean Time (GMT).  Do not assume that
CLOCK_REALTIME is zero, it might be one, or something else.
Another potentially useful (but not available everywhere) value is
C<CLOCK_MONOTONIC>, which guarantees a monotonically increasing time
value (unlike time() or gettimeofday(), which can be adjusted).
See your system documentation for other possibly supported values.

=item clock_getres ( $which )

Return as seconds the resolution of the POSIX high resolution timer
specified by C<$which>.  All implementations that support POSIX high
resolution timers are supposed to support at least the C<$which> value
of C<CLOCK_REALTIME>, see L</clock_gettime>.

B<NOTE>: the resolution returned may be highly optimistic.  Even if
the resolution is high (a small number), all it means is that you'll
be able to specify the arguments to clock_gettime() and clock_nanosleep()
with that resolution.  The system might not actually be able to measure
events at that resolution, and the various overheads and the overall system
load are certain to affect any timings.

=item clock_nanosleep ( $which, $nanoseconds, $flags = 0)

Sleeps for the number of nanoseconds (1e9ths of a second) specified.
Returns the number of nanoseconds actually slept.  The $which is the
"clock id", as with clock_gettime() and clock_getres().  The flags
default to zero but C<TIMER_ABSTIME> can specified (must be exported
explicitly) which means that C<$nanoseconds> is not a time interval
(as is the default) but instead an absolute time.  Can sleep for more
than one second.  Can also sleep for zero seconds, which often works
like a I<thread yield>.  See also C<Time::HiRes::sleep()>,
C<Time::HiRes::usleep()>, and C<Time::HiRes::nanosleep()>.

Do not expect clock_nanosleep() to be exact down to one nanosecond.
Getting even accuracy of one thousand nanoseconds is good.

=item clock()

Return as seconds the I<process time> (user + system time) spent by
the process since the first call to clock() (the definition is B<not>
"since the start of the process", though if you are lucky these times
may be quite close to each other, depending on the system).  What this
means is that you probably need to store the result of your first call
to clock(), and subtract that value from the following results of clock().

The time returned also includes the process times of the terminated
child processes for which wait() has been executed.  This value is
somewhat like the second value returned by the times() of core Perl,
but not necessarily identical.  Note that due to backward
compatibility limitations the returned value may wrap around at about
2147 seconds or at about 36 minutes.

=item stat

=item stat FH

=item stat EXPR

=item lstat

=item lstat FH

=item lstat EXPR

As L<perlfunc/stat> or L<perlfunc/lstat>
but with the access/modify/change file timestamps
in subsecond resolution, if the operating system and the filesystem
both support such timestamps.  To override the standard stat():

    use Time::HiRes qw(stat);

Test for the value of &Time::HiRes::d_hires_stat to find out whether
the operating system supports subsecond file timestamps: a value
larger than zero means yes. There are unfortunately no easy
ways to find out whether the filesystem supports such timestamps.
UNIX filesystems often do; NTFS does; FAT doesn't (FAT timestamp
granularity is B<two> seconds).

A zero return value of &Time::HiRes::d_hires_stat means that
Time::HiRes::stat is a no-op passthrough for CORE::stat()
(and likewise for lstat),
and therefore the timestamps will stay integers.  The same
thing will happen if the filesystem does not do subsecond timestamps,
even if the &Time::HiRes::d_hires_stat is non-zero.

In any case do not expect nanosecond resolution, or even a microsecond
resolution.  Also note that the modify/access timestamps might have
different resolutions, and that they need not be synchronized, e.g.
if the operations are

    write
    stat # t1
    read
    stat # t2

the access time stamp from t2 need not be greater-than the modify
time stamp from t1: it may be equal or I<less>.

=item utime LIST

As L<perlfunc/utime>
but with the ability to set the access/modify file timestamps
in subsecond resolution, if the operating system and the filesystem,
and the mount options of the filesystem, all support such timestamps.

To override the standard utime():

    use Time::HiRes qw(utime);

Test for the value of &Time::HiRes::d_hires_utime to find out whether
the operating system supports setting subsecond file timestamps.

As with CORE::utime(), passing undef as both the atime and mtime will
call the syscall with a NULL argument.

The actual achievable subsecond resolution depends on the combination
of the operating system and the filesystem.

Modifying the timestamps may not be possible at all: for example, the
C<noatime> filesystem mount option may prohibit you from changing the
access time timestamp.

Returns the number of files successfully changed.

=back

=head1 EXAMPLES

  use Time::HiRes qw(usleep ualarm gettimeofday tv_interval);

  $microseconds = 750_000;
  usleep($microseconds);

  # signal alarm in 2.5s & every .1s thereafter
  ualarm(2_500_000, 100_000);
  # cancel that ualarm
  ualarm(0);

  # get seconds and microseconds since the epoch
  ($s, $usec) = gettimeofday();

  # measure elapsed time 
  # (could also do by subtracting 2 gettimeofday return values)
  $t0 = [gettimeofday];
  # do bunch of stuff here
  $t1 = [gettimeofday];
  # do more stuff here
  $t0_t1 = tv_interval $t0, $t1;

  $elapsed = tv_interval ($t0, [gettimeofday]);
  $elapsed = tv_interval ($t0);	# equivalent code

  #
  # replacements for time, alarm and sleep that know about
  # floating seconds
  #
  use Time::HiRes;
  $now_fractions = Time::HiRes::time;
  Time::HiRes::sleep (2.5);
  Time::HiRes::alarm (10.6666666);

  use Time::HiRes qw ( time alarm sleep );
  $now_fractions = time;
  sleep (2.5);
  alarm (10.6666666);

  # Arm an interval timer to go off first at 10 seconds and
  # after that every 2.5 seconds, in process virtual time

  use Time::HiRes qw ( setitimer ITIMER_VIRTUAL time );

  $SIG{VTALRM} = sub { print time, "\n" };
  setitimer(ITIMER_VIRTUAL, 10, 2.5);

  use Time::HiRes qw( clock_gettime clock_getres CLOCK_REALTIME );
  # Read the POSIX high resolution timer.
  my $high = clock_gettime(CLOCK_REALTIME);
  # But how accurate we can be, really?
  my $reso = clock_getres(CLOCK_REALTIME);

  use Time::HiRes qw( clock_nanosleep TIMER_ABSTIME );
  clock_nanosleep(CLOCK_REALTIME, 1e6);
  clock_nanosleep(CLOCK_REALTIME, 2e9, TIMER_ABSTIME);

  use Time::HiRes qw( clock );
  my $clock0 = clock();
  ... # Do something.
  my $clock1 = clock();
  my $clockd = $clock1 - $clock0;

  use Time::HiRes qw( stat );
  my ($atime, $mtime, $ctime) = (stat("istics"))[8, 9, 10];

=head1 C API

In addition to the perl API described above, a C API is available for
extension writers.  The following C functions are available in the
modglobal hash:

  name             C prototype
  ---------------  ----------------------
  Time::NVtime     NV (*)()
  Time::U2time     void (*)(pTHX_ UV ret[2])

Both functions return equivalent information (like C<gettimeofday>)
but with different representations.  The names C<NVtime> and C<U2time>
were selected mainly because they are operating system independent.
(C<gettimeofday> is Unix-centric, though some platforms like Win32 and
VMS have emulations for it.)

Here is an example of using C<NVtime> from C:

  NV (*myNVtime)(); /* Returns -1 on failure. */
  SV **svp = hv_fetchs(PL_modglobal, "Time::NVtime", 0);
  if (!svp)         croak("Time::HiRes is required");
  if (!SvIOK(*svp)) croak("Time::NVtime isn't a function pointer");
  myNVtime = INT2PTR(NV(*)(), SvIV(*svp));
  printf("The current time is: %" NVff "\n", (*myNVtime)());

=head1 DIAGNOSTICS

=head2 useconds or interval more than ...

In ualarm() you tried to use number of microseconds or interval (also
in microseconds) more than 1_000_000 and setitimer() is not available
in your system to emulate that case.

=head2 negative time not invented yet

You tried to use a negative time argument.

=head2 internal error: useconds < 0 (unsigned ... signed ...)

Something went horribly wrong-- the number of microseconds that cannot
become negative just became negative.  Maybe your compiler is broken?

=head2 useconds or uinterval equal to or more than 1000000

In some platforms it is not possible to get an alarm with subsecond
resolution and later than one second.

=head2 unimplemented in this platform

Some calls simply aren't available, real or emulated, on every platform.

=head1 CAVEATS

Notice that the core C<time()> maybe rounding rather than truncating.
What this means is that the core C<time()> may be reporting the time
as one second later than C<gettimeofday()> and C<Time::HiRes::time()>.

Adjusting the system clock (either manually or by services like ntp)
may cause problems, especially for long running programs that assume
a monotonously increasing time (note that all platforms do not adjust
time as gracefully as UNIX ntp does).  For example in Win32 (and derived
platforms like Cygwin and MinGW) the Time::HiRes::time() may temporarily
drift off from the system clock (and the original time())  by up to 0.5
seconds. Time::HiRes will notice this eventually and recalibrate.
Note that since Time::HiRes 1.77 the clock_gettime(CLOCK_MONOTONIC)
might help in this (in case your system supports CLOCK_MONOTONIC).

Some systems have APIs but not implementations: for example QNX and Haiku
have the interval timer APIs but not the functionality.

In pre-Sierra macOS (pre-10.12, OS X) clock_getres(), clock_gettime()
and clock_nanosleep() are emulated using the Mach timers; as a side
effect of being emulated the CLOCK_REALTIME and CLOCK_MONOTONIC are
the same timer.

gnukfreebsd seems to have non-functional futimens() and utimensat()
(at least as of 10.1): therefore the hires utime() does not work.

=head1 SEE ALSO

Perl modules L<BSD::Resource>, L<Time::TAI64>.

Your system documentation for C<clock>, C<clock_gettime>,
C<clock_getres>, C<clock_nanosleep>, C<clock_settime>, C<getitimer>,
C<gettimeofday>, C<setitimer>, C<sleep>, C<stat>, C<ualarm>.

=head1 AUTHORS

D. Wegscheid <wegscd@whirlpool.com>
R. Schertler <roderick@argon.org>
J. Hietaniemi <jhi@iki.fi>
G. Aas <gisle@aas.no>

=head1 COPYRIGHT AND LICENSE

Copyright (c) 1996-2002 Douglas E. Wegscheid.  All rights reserved.

Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Jarkko Hietaniemi.
All rights reserved.

Copyright (C) 2011, 2012, 2013 Andrew Main (Zefram) <zefram@fysh.org>

This program is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.

=cut
PK]&$[��`^`^Piece/Piece.sonuȯ��ELF>�@`W@8	@<< �J�J �J HH �L�L �L 888$$�;�;�;  S�td�;�;�;  P�td(9(9(9ddQ�tdR�td�J�J �J HPGNU�Ix=�l��7;'O��e�c#�@!�(�#&(�V��BE���|<��n�qX,�f3j8e�d��s�n@���me� ��+,�� k~e��Y�����	, �F"<S P �}P ��Q ��*j�P �(��p3AJ�J �@�Q __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibpthread.so.0tzsetPerl_croak_xs_usagegmtimelocaltimestrftimestrlenPerl_safesysmallocPerl_safesysreallocPerl_newSVpvPerl_sv_2mortalPerl_safesysfreePerl_sv_2iv_flagsPerl_sv_2nv_flagsPerl_sv_2pv_flags__stack_chk_fail__ctype_b_loc_C_time_localestrncasecmpstrncpy__errno_locationstrtolPerl_init_tmpush_common_tmPerl_newSVivPerl_stack_growreturn_11part_tmPerl_warn_nocontextPerl_croak_nocontextboot_Time__PiecePerl_xs_handshakePerl_newXS_flagsPerl_xs_boot_epilog_time_using_locale_time_localebuflibperl.so.5.26libc.so.6_edata__bss_start_endGLIBC_2.2.5GLIBC_2.3GLIBC_2.4U ui	�sii
�ii
�ui	��J p�J 0�J �J �J 6�J 6�J 6�J 6K 6K #6K '6K +6 K /6(K 360K 768K ;6@K ?6HK G6PK P6XK V6`K 6hK \6pK a6xK f6�K m6�K w6�K 6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6�K �6L �6L �6L $5L 	5(L -50L 058L �4@L ?6HL G6PL P6XL V6`L 6hL \6pL a6xL f6�L m6�L w6�L 6�L �6�L �4�L �4�O �O �O *�O �O !�N �N �N �N (�N �N �N O O 	O 
O  O (O 
0O 8O @O HO PO XO `O hO pO &xO �O �O �O �O �O �O �O �O  �O !�O "��H��H�a< H��t��H����5"; �%#; ��h�������h��������h�������h�������h�������h�������h�������h��q������h��a������h	��Q������h
��A������h��1������h��!������h
��������h��������h������h�������h��������h�������h�������h�������h�������h�������h��q������h��a������h��Q������h��A������h��1������h��!������h��������h��������h������h ��������%
9 D���%9 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%�8 D���%}8 D���%u8 D���%m8 D���%e8 D���%]8 D���%U8 D���%M8 D���%E8 D���%=8 D���%58 D���%-8 D���%%8 D���%8 D���%8 D���%
8 DH�=98 H�28 H9�tH��7 H��t	�����H�=	8 H�58 H)�H��H��H��?H�H�tH��7 H��t��fD�����=�7 u+UH�=�7 H��tH�=n2 �I����d�����7 ]������w������H�WxH�H�J�H�OxHc
H�WH��H)�H����u����PH��H�5����f���AWAVAUATUH��SH��L�/dH�%(H��$�1�H�GxH�P�H�WxH�WHcH�ˍAH��I)�I��A�M�����H�H�4�H��H�L$�F% =�KL�f�CH�H�4‹F% =�H��H,@(H�D$(A��~gH�E��Hc�H�4؋F% =��H��@ ��t;H�|$(�����o )d$0�oh)l$@�op )t$PH�@0H�D$`�9f�H�|$(����o)L$0�oP)T$@�oX )\$PH�@0H�D$`H�D$pL�l$0L�⾀L��H��H�D$�.���H��H�D$H�@�H��~��H��uA�<$��L���������H�$Lc�L�����H�$I��k�d�$M��u&�w�9$|c�L��Lc�L�����I��H��tSL��L��L��L�����HcЅ�~�9�~�L��H�����H��H�\$H]H���H���L��H��M����4L���@���H�T$H�t$H�����H��H�\$H]H���
���H�H�D$HEH�EH��$�dH3%(unH��[]A\A]A^A_�D�H���C����.���fD�H���+����H,������1ҹ���H�UI�����H��H�5�������@AWI��AVAUATI��UH��SH�H��H�|$L�$dH�%(H�D$x1�E�/E��t=E�4$E��t3I��A��%ti���H�A��DB ��E8�uE�/I��E��u�M���E�u�E1�H�|$xdH3<%(L����H�Ĉ[]A\A]A^A_�@E1�1�I��E�o�A��z�b���A��Hc�H�>��f.�B�Dr u�=����DB �/���I��A�$��u�����L�$H��H�9H�|$L������I��H��������G����L�$H��H����L�|$ E1�E��L�d$H�l$(�!f�A��B��	I��I�������E��E��u�H�y2 A��B��	J�4�H��H�t$���H�t$H�|$Hc�H���Y�����u�H��D��H�l$(L�d$L�|$ �EI��?���H�2 E1�L�|$ H�l$(M��H�D$�>�N����L���@���L��L��Hc�H��������k	I��I���9���D�|$H�D$A��Au�N�����A��+�.	A��-����A������`���M�l$1�I��H�0I�UH��DV������I���LP�M9�u݉Ⱥ��Q�����)�)�A��Ek�d)�H�$A��)M��@�����A��H�8�4Wf�� �%���f���p���1�A��Y�TM�D1��f.�E�4$E��t$A���4Of��t��E��I��A�TV�M9�u�A��Y�xA��yu��D�Jd@��@��Eх�������UA�$�������H��DQ �����A���u�y����I��A����b����DA t��V���@����M��H��I��E�uE��tB�Dpu�M9��#���L��L)�H�xH�D$���I��H����H�T$L��H�����H�D$A�����L��H�=�����u
H�$�L���~���H�$�������M������S���A��H�0�DV���A�L$A��M�D$��0������D~������I���TQЃ�������UA�$���<���H��DQ �.���A���u�!����I��A����
����DA t����@L�$H��H���������A��H�0�DV�&���A�L$A��M�D$��0���T���D~�F����I���TQЃ�������UA�$���~���H��DQ �p���A���u�c���f�I��A����J����DA t��>���@���H�B�Dr �|���@I��A�$�DB u��
������H�0A���F���J���I�L$1���t,��E��I��A�DF�L9�tE�4$E��t
A���V��u�L���=m�����EI���E����H�5�L���{�����}����u�EI���a���L�$H��H�q�?���A	��E��������L�$H��H�E�������H�A��DA�g���A�T$A��I�|$��0������Dq������I���DBЃ��(���k�d-l�E����I��A��%���������D�[�H�A��DA���A�D$A��I�|$��0���K��Dq�V�4���I�T$�DpЃ�5�����A�D$I�Ԅ��B����DA �7���A���u�*���I��A��������DA t�����@L�$H��H�������A��H�0�V�� �������+���A�|$A��M�D$��0@����D��B�DN����@��I���TW�A��M�R��<�����UA�$���x���H��DQ �j���A���u�]���I��A����J����DA t��>���@D	��1���A����������A��fH��L�$H��H��HD������A��H�8�DW�;���A�t$A��M�L$��0@���pD��B�DG�`��@��I���TV�A��H��A��k��������UA�$���~���H��DQ �p���A���u�c���f�I��A����J����DA t��>���@�+�H�t$0�
L��D�0�I����A�}"�W���E�uH�|$f�H�t$@H�D$8L�d$0)D$@)D$P)D$`H�D$p�Y�H�|$8�O��o)L$@�oP)T$P�oX )\$`H�@0H�D$pH�D$@H�EH�D$HH�EH�D$PH�EH�D$XH�E�D$`�E �s����$�A��H��DQ�����A�փ�0��������UA�$���<���H��DQ �.���A���u�!����I��A����
����DA t���@H��( J���`�a���J�t�`�W������E����$���@�H�5�
L�����������E������2������E�'���A�����H��D$H�l$(L�|$ ỈE�j�M���
���M�����M�����I���o�����l�����;���U�����5�{�I����M���z�����5�b�I����������M��5�D��ATI��UH��SH��Hc2�g�H��H�CIct$�V�H��H�CIct$�E�H��H�CIct$�4�H��H�C Ict$�#�H��H�C(Ict$��H��H�C0Ict$��H��H�C8Ict$���H��H�C@Ict$ ���H�CHH�CH[]A\�f���ATUH��H��SH��PH�]H�MdH�%(H�D$H1�H�ExH�P�H�UxHcH�6�PH��D�f(H��H)�H��H�����^Hc�H��H�4ыF% =�H��H,@(H�D$H�|$E�����t��o )d$�oh)l$ �op )t$0H�@0H�D$@H�E H)�H��@��H��H�T$H���=�Hct$0H��I�����I�\$�I�D$I�D$I��H�EfDH��H�s�H���P�L9�u�H�D$HdH3%(��H��P[]A\�fD�s��o)L$�oP)T$ �oX )\$0H�@0H�D$@�J�����H���c��H,����f�H��H�޹	H����H������H�5�
�	���@��ATI��USH��D�B�C�RD�K��x E����D�H��A��k�.D������A��liʙ�gfff������)�Ai�mA�<���Q�E��A�xAI����D����D��E1���A�É����)‹A)�D�׃�<wA��1�kK<iS������Q���Ⱥų������D�
A��A)�Ai������)�����k�<)�AȍO��S��k9��D����D�K����)�Diiұ:)Ѻ��������D�
�s�mA��A)�Ak�dA�Ai���)��������)�E��iҵ)Ѻ�����������)�i�mA�)��JA������A���CA�����������K�CAi�m��S������Q)�E��A�@AI�����)�D��A����E�‰����D)�A)‰�D)�)Ѻ�$I����K�����)�)�)lj{I�D$ H)�H��P��H��L�����1�L��H����1�L��H�]�H�E�y�H�EH�EH��I�$f�H��H�s�L�����H9�u�[]A\�fD�ȺE.��
�����)кų���i��Q)�����A������@��{�׀+�D��D���D���D��)�DiʙA�ӺgfffD��A�����A)�D�A��]��A�C�A�������S���������C�C�s���@�ȺE.�A�������A��A��A)�A)�EiɀQE)�E��uD�1��f���D�������)кų��B�|���i��Q������D�
�����A��A)�Ai�)��������)�k�<)�A����f.�A������A�C�A��������iʙ�gfff������)����H��L����H����fD��AWAVAUATUH��H��SH��hH�]dH�%(H�D$X1�H�ExH��H�P�H�UxHcH�EI�ԍrH��H)�H��H�����:Hc�H��0H�4�H�\$�V�� ���dH�D�z A�T$Hc�H�4ЋV�� ����H�D�r A�T$Hc�H�4ЋV�� ����H�D�j A�T$Hc�H�4ЋV�� ���DH��Z �$A�T$Hc�H�4ЋV�� ����H��J �L$A�L$Hc�H�4ȋF% =��H��X H�D$H�|$��H�t$H�T$ H���o)D$ �oHD�|$ )L$0�oP D�t$$)T$@H�@0D�l$(H�D$P�$�\$4�D$,�D$�D$0�>�H�D$XdH3%(��H��h[]A\A]A^A_��H����A��H�E�����H�������9���@�H�����D$H�E���fD�H���c��$H�E�����H���C�A��H�E�b�����H���#�A��H�E����H�58�����fD��AVAUATUSH��H��H��PL�#dH�%(H�D$H1�H�CxL��H�P�H�SxHcH�CH�ՍJH��H)�H��H�����?Hc�I��H�4ȋV�� ����L�n��Hc�H�4�F% =��L�vH�|$H�l$H�D$��L�D$H��L���oL��H���D$)D$�oH)L$ �oP )T$0H�@0�D$0����H�D$@��H�����8umH��L��H���/�H�D$HdH3%(ueH��P[]A\A]A^�f��1�H���Q�I��H�C�%���D�1�H���1�I���*���f�H��H�=�1�����}�����H�5��9�H�=���ff.�f���UH��L��1�SH�
�H��H�����
H�����H��E1�L��H�
�H����H�5��V�H��E1�L��H�
�H���H�5��/�H��E1�L��H�
eH�����H�5���H��E1�L��H�
>H����H�5����H��E1�L�rH�
H�f�H�5y��H��E1�H�5�H�L�AH�
�H�5��@(����H��H��@(H��[]����H��H���fmt, epoch, islocal = 1%b %e%B %e%a %Ef %X %Z %Y%a %Ef %T %Y%m/%d/%y%H:%M%I:%M:%S %p%H:%M:%SAMPMGMTsecstring, formatError parsing time1.31v5.26.0Piece.c$$;$Time::Piece::_strftimeTime::Piece::_tzsetTime::Piece::_strptime$$$$$$Time::Piece::_mini_mktimeTime::Piece::_crt_gmtimeTime::Piece::_crt_localtimeJanFebMarAprMayJunJulAugSepOctNovDecJanuaryFebruaryMarchAprilJuneJulyAugustSeptemberOctoberNovemberDecemberSunMonTueWedThuFriSatSundayMondayTuesdayWednesdayThursdayFridaySaturdayP�������������������������������������P������������������������������8���(����������������������h��h���������������8��p�p����8�����+����y������������(���I�sec, min, hour, mday, mon, yeargarbage at end of string in strptime: %s;dh�������X���������$��p���h���������PH����zRx�$��� FJw�?:*3$"D���\���>oLp����F�B�B �B(�A0�D8�G�x
8A0A(B BBBFH�l�KB�E�B �B(�D0�D8�N��
8A0A(B BBBE(p��F�D�D ��AB08���F�A�G �Dp+
 AABG,l��jF�D�A ��
ABGL���F�B�B �B(�A0�G8�D��
8A0A(B BBBDD�0����F�B�B �A(�A0�J�
0A(A BBBC(4����AE�M�Z AAGNU�p0�J 66666#6'6+6/63676;6?6G6P6V66\6a6f6m6w66�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6$5	5-505�4?6G6P6V66\6a6f6m6w66�6�4�4Ucsh
�4�J �J ���o`��
��N P8
	���o���o�	���o�o~	���o<�L ������ 0@P`p�������� 0@P`p���GA$3a1h�4GA$3p1113��4GA*GA$annobin gcc 8.5.0 20210514GA$plugin name: gcc-annobinGA$running gcc 8.5.0 20210514GA*GA*GA!
GA*FORTIFYGA+GLIBCXX_ASSERTIONSGA*GOW*�GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realignGA+GLIBCXX_ASSERTIONS��
GA*FORTIFYPiece.so-5.26.3-423.el8_10.x86_64.debugg��7zXZ�ִF!t/��'�]?�E�h=��ڊ�2N�%y^ ��(1#�xc��wj�WƩ�,��Ŝ
Cn����"i���%_�)�����-��r|�S�8�i��c���I����6�>5��٨��^�CZ�]��/��sr�AP��b�/����
MR�ͻ0a���EID��B�b�vob&��.��ր�-���G���ٞ�>E�tʚ�
 �{Z����!>;�R�k�G�������[A�	kt��Q��Z�3�jT&��6��#$��zc������m�C�Xk�Tq�(lV���������[iB񇬛�+2�l&�>�U��$.�j����[]��3+�#���;�&dE�Y��6����!q�[�²j��Zk�R���Fc���!�.�8�8��a�_o�b�Pob�_�ٸYJm
��g
��U��_h�T� (��3:�=kc�#�l�����L��S�]�X'0"\QDZW�2��<(�b�X��DdKJ�\�%�j���t(⭜l��}�{ĭ���R���ؚ�$F��H�O�Zz;3�%Ma��ۣ�<\M�]��V��b��my�� �����q�e���!{�����k���H���`j<�7=97�X/�ˣ2�X|G�U��َ3m���ײ&f���wvFE��P���#9�Me�M�rVS`m8řu�C�
w��tg=K,T/BT����dU�b,W
<��C$B�	��9�؉D���~�{��C\M͘��'�2�;J��a�l�n���@���d��\+T`j�x8����J�S�2щ��{��0��@��������`��|�-��r��GrA��&]�����v򠾒!ߡ���E?ͤ���#�|�!�[��
��,��5�������v����ʰ����Đb|���EW ��g�YZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.bss.gnu.build.attributes.gnu_debuglink.gnu_debugdata88$���o``H(�� 0���8���o~	~	XE���o�	�	`T8
8
^BPPhhhc�� n��w���}�4�4
��4�4`�(9(9d��9�9`��;�; ��J �J��J �J��J �J� ��L �L��N �NH�P �O� ��Q`�OH@R,lR�8V"PKW�Z�ᦱ
Seconds.pmnu�[���PKW�ZہhS]S]@Piece.pmnu�[���PK56�Z*�$.	.	�qlocaltime.pmnu�[���PK56�Z�s���5{tm.pmnu�[���PK56�Z8��,�	�		~gmtime.pmnu�[���PK�c[��z�8`8`;�HiRes.pmnu�[���PK]&$[��`^`^��Piece/Piece.sonuȯ��PKIG